Serveur d'exploration sur les récepteurs immunitaires végétaux

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A new bacteria-free strategy induced by MaGal2 facilitates pinewood nematode escape immune response from its vector beetle.

Identifieur interne : 000228 ( Main/Exploration ); précédent : 000227; suivant : 000229

A new bacteria-free strategy induced by MaGal2 facilitates pinewood nematode escape immune response from its vector beetle.

Auteurs : Chi Zhang [République populaire de Chine] ; Jacob D. Wickham [République populaire de Chine] ; Lilin Zhao [République populaire de Chine] ; Jianghua Sun [République populaire de Chine]

Source :

RBID : pubmed:32443173

Abstract

Symbiotic microbes play a crucial role in regulating parasite-host interactions; however, the role of bacterial associates in parasite-host interactions requires elucidation. In this study, we showed that, instead of introducing numerous symbiotic bacteria, dispersal of 4th-stage juvenile (JIV ) pinewood nematodes (PWNs), Bursaphelenchus xylophilus, only introduced few bacteria to its vector beetle, Monochamus alternatus (Ma). JIV showed weak binding ability to five dominant bacteria species isolated from the beetles' pupal chamber. This was especially the case for binding to the opportunistic pathogenic species Serratia marcescens; the nematodes' bacteria binding ability at this critical stage when it infiltrates Ma for dispersal was much weaker compared with Caenorhabditis elegans, Diplogasteroides asiaticus, and propagative-stage PWN. The associated bacterium S. marcescens, which was isolated from the beetles' pupal chambers, was unfavorable to Ma, because it caused a higher mortality rate upon injection into tracheae. In addition, S. marcescens in the tracheae caused more immune effector disorders compared with PWN alone. Ma_Galectin2 (MaGal2), a pattern-recognition receptor, was up-regulated following PWN loading. Recombinant MaGal2 protein formed aggregates with five dominant associated bacteria in vitro. Moreover, MaGal2 knockdown beetles had up-regulated prophenoloxidase gene expression, increased phenoloxidase activity, and decreased PWN loading. Our study revealed a previously unknown strategy for immune evasion of this plant pathogen inside its vector, and provides novel insights into the role of bacteria in parasite-host interactions.

DOI: 10.1111/1744-7917.12823
PubMed: 32443173


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A new bacteria-free strategy induced by MaGal2 facilitates pinewood nematode escape immune response from its vector beetle.</title>
<author>
<name sortKey="Zhang, Chi" sort="Zhang, Chi" uniqKey="Zhang C" first="Chi" last="Zhang">Chi Zhang</name>
<affiliation wicri:level="3">
<nlm:affiliation>State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wickham, Jacob D" sort="Wickham, Jacob D" uniqKey="Wickham J" first="Jacob D" last="Wickham">Jacob D. Wickham</name>
<affiliation wicri:level="3">
<nlm:affiliation>State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zhao, Lilin" sort="Zhao, Lilin" uniqKey="Zhao L" first="Lilin" last="Zhao">Lilin Zhao</name>
<affiliation wicri:level="3">
<nlm:affiliation>State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Sun, Jianghua" sort="Sun, Jianghua" uniqKey="Sun J" first="Jianghua" last="Sun">Jianghua Sun</name>
<affiliation wicri:level="3">
<nlm:affiliation>State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32443173</idno>
<idno type="pmid">32443173</idno>
<idno type="doi">10.1111/1744-7917.12823</idno>
<idno type="wicri:Area/Main/Corpus">000126</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000126</idno>
<idno type="wicri:Area/Main/Curation">000126</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000126</idno>
<idno type="wicri:Area/Main/Exploration">000126</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">A new bacteria-free strategy induced by MaGal2 facilitates pinewood nematode escape immune response from its vector beetle.</title>
<author>
<name sortKey="Zhang, Chi" sort="Zhang, Chi" uniqKey="Zhang C" first="Chi" last="Zhang">Chi Zhang</name>
<affiliation wicri:level="3">
<nlm:affiliation>State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Wickham, Jacob D" sort="Wickham, Jacob D" uniqKey="Wickham J" first="Jacob D" last="Wickham">Jacob D. Wickham</name>
<affiliation wicri:level="3">
<nlm:affiliation>State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Zhao, Lilin" sort="Zhao, Lilin" uniqKey="Zhao L" first="Lilin" last="Zhao">Lilin Zhao</name>
<affiliation wicri:level="3">
<nlm:affiliation>State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Sun, Jianghua" sort="Sun, Jianghua" uniqKey="Sun J" first="Jianghua" last="Sun">Jianghua Sun</name>
<affiliation wicri:level="3">
<nlm:affiliation>State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing</wicri:regionArea>
<placeName>
<settlement type="city">Pékin</settlement>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Insect science</title>
<idno type="eISSN">1744-7917</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Symbiotic microbes play a crucial role in regulating parasite-host interactions; however, the role of bacterial associates in parasite-host interactions requires elucidation. In this study, we showed that, instead of introducing numerous symbiotic bacteria, dispersal of 4th-stage juvenile (J
<sub>IV</sub>
) pinewood nematodes (PWNs), Bursaphelenchus xylophilus, only introduced few bacteria to its vector beetle, Monochamus alternatus (Ma). J
<sub>IV</sub>
showed weak binding ability to five dominant bacteria species isolated from the beetles' pupal chamber. This was especially the case for binding to the opportunistic pathogenic species Serratia marcescens; the nematodes' bacteria binding ability at this critical stage when it infiltrates Ma for dispersal was much weaker compared with Caenorhabditis elegans, Diplogasteroides asiaticus, and propagative-stage PWN. The associated bacterium S. marcescens, which was isolated from the beetles' pupal chambers, was unfavorable to Ma, because it caused a higher mortality rate upon injection into tracheae. In addition, S. marcescens in the tracheae caused more immune effector disorders compared with PWN alone. Ma_Galectin2 (MaGal2), a pattern-recognition receptor, was up-regulated following PWN loading. Recombinant MaGal2 protein formed aggregates with five dominant associated bacteria in vitro. Moreover, MaGal2 knockdown beetles had up-regulated prophenoloxidase gene expression, increased phenoloxidase activity, and decreased PWN loading. Our study revealed a previously unknown strategy for immune evasion of this plant pathogen inside its vector, and provides novel insights into the role of bacteria in parasite-host interactions.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="Publisher" Owner="NLM">
<PMID Version="1">32443173</PMID>
<DateRevised>
<Year>2020</Year>
<Month>07</Month>
<Day>21</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1744-7917</ISSN>
<JournalIssue CitedMedium="Internet">
<PubDate>
<Year>2020</Year>
<Month>May</Month>
<Day>22</Day>
</PubDate>
</JournalIssue>
<Title>Insect science</Title>
<ISOAbbreviation>Insect Sci</ISOAbbreviation>
</Journal>
<ArticleTitle>A new bacteria-free strategy induced by MaGal2 facilitates pinewood nematode escape immune response from its vector beetle.</ArticleTitle>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/1744-7917.12823</ELocationID>
<Abstract>
<AbstractText>Symbiotic microbes play a crucial role in regulating parasite-host interactions; however, the role of bacterial associates in parasite-host interactions requires elucidation. In this study, we showed that, instead of introducing numerous symbiotic bacteria, dispersal of 4th-stage juvenile (J
<sub>IV</sub>
) pinewood nematodes (PWNs), Bursaphelenchus xylophilus, only introduced few bacteria to its vector beetle, Monochamus alternatus (Ma). J
<sub>IV</sub>
showed weak binding ability to five dominant bacteria species isolated from the beetles' pupal chamber. This was especially the case for binding to the opportunistic pathogenic species Serratia marcescens; the nematodes' bacteria binding ability at this critical stage when it infiltrates Ma for dispersal was much weaker compared with Caenorhabditis elegans, Diplogasteroides asiaticus, and propagative-stage PWN. The associated bacterium S. marcescens, which was isolated from the beetles' pupal chambers, was unfavorable to Ma, because it caused a higher mortality rate upon injection into tracheae. In addition, S. marcescens in the tracheae caused more immune effector disorders compared with PWN alone. Ma_Galectin2 (MaGal2), a pattern-recognition receptor, was up-regulated following PWN loading. Recombinant MaGal2 protein formed aggregates with five dominant associated bacteria in vitro. Moreover, MaGal2 knockdown beetles had up-regulated prophenoloxidase gene expression, increased phenoloxidase activity, and decreased PWN loading. Our study revealed a previously unknown strategy for immune evasion of this plant pathogen inside its vector, and provides novel insights into the role of bacteria in parasite-host interactions.</AbstractText>
<CopyrightInformation>© 2020 Institute of Zoology, Chinese Academy of Sciences.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Chi</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wickham</LastName>
<ForeName>Jacob D</ForeName>
<Initials>JD</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhao</LastName>
<ForeName>Lilin</ForeName>
<Initials>L</Initials>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Sun</LastName>
<ForeName>Jianghua</ForeName>
<Initials>J</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0002-9465-3672</Identifier>
<AffiliationInfo>
<Affiliation>State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>31630013</GrantID>
<Agency>National Natural Science Foundation of China</Agency>
<Country></Country>
</Grant>
<Grant>
<Agency>Frontier Science Key Project of the Chinese Academy of Sciences</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>05</Month>
<Day>22</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Australia</Country>
<MedlineTA>Insect Sci</MedlineTA>
<NlmUniqueID>101266965</NlmUniqueID>
<ISSNLinking>1672-9609</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">galectin</Keyword>
<Keyword MajorTopicYN="N">immune evasion</Keyword>
<Keyword MajorTopicYN="N">pinewood nematode</Keyword>
<Keyword MajorTopicYN="N">symbiotic bacteria</Keyword>
<Keyword MajorTopicYN="N">vector beetle</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>03</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>04</Month>
<Day>24</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>05</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>5</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>5</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>5</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>aheadofprint</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32443173</ArticleId>
<ArticleId IdType="doi">10.1111/1744-7917.12823</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>References</Title>
<Reference>
<Citation>Adams, A.S., Aylward, F.O., Adams, S.M., Erbilgin, N., Aukema, B.H., Currie, C.R., et al. (2013) Mountain pine beetles colonizing historical and naive host trees are associated with a bacterial community highly enriched in genes contributing to terpene metabolism. Applied and Environmental Microbiology, 79, 3468-3475.</Citation>
</Reference>
<Reference>
<Citation>Alves, M., Pereira, A., Matos, P., Henriques, J., Vicente, C., Aikawa, T., et al. (2016) Bacterial community associated to the pine wilt disease insect vectors Monochamus galloprovincialis and Monochamus alternatus. Scientific Reports, 6, 23908.</Citation>
</Reference>
<Reference>
<Citation>Alves, M., Pereira, A., Vicente, C., Matos, P., Henriques, J., Lopes, H., et al. (2018) The role of bacteria in pine wilt disease: insights from microbiome analysis. FEMS Microbiology Ecology, 94(7), fiy077.</Citation>
</Reference>
<Reference>
<Citation>Backhed, F., Ley, R.E., Sonnenburg, J.L., Peterson, D.A. and Gordon, J.I. (2005) Host-bacterial mutualism in the human intestine. Science, 307, 1915-1920.</Citation>
</Reference>
<Reference>
<Citation>Bai, L., Wang, L., Vega-Rodriguez, J., Wang, G. and Wang, S. (2019) A gut symbiotic bacterium Serratia marcescens renders mosquito resistance to plasmodium infection through activation of mosquito immune responses. Frontiers in Microbiology, 10, 1580.</Citation>
</Reference>
<Reference>
<Citation>Belkaid, Y. and Harrison, O.J. (2017) Homeostatic immunity and the microbiota. Immunity, 46, 562-576.</Citation>
</Reference>
<Reference>
<Citation>Binda-Rossetti, S., Mastore, M., Protasoni, M. and Brivio, M.F. (2016) Effects of an entomopathogen nematode on the immune response of the insect pest red palm weevil: Focus on the host antimicrobial response. Journal of Invertebrate Pathology, 133, 110-119.</Citation>
</Reference>
<Reference>
<Citation>Brenner, S. (1974) The genetics of Caenorhabditis elegans. Genetics, 77, 71-94.</Citation>
</Reference>
<Reference>
<Citation>Brivio, M.F. and Mastore, M. (2018) Nematobacterial complexes and insect hosts: different weapons for the same war. Insects, 9, E117.</Citation>
</Reference>
<Reference>
<Citation>Brivio, M.F., Toscano, A., De Pasquale, S.M., De Lerma Barbaro, A., Giovannardi, S., Finzi, G. et al. (2018) Surface protein components from entomopathogenic nematodes and their symbiotic bacteria: effects on immune responses of the greater wax moth, Galleria mellonella (Lepidoptera: Pyralidae). Pest Management Science, https://doi.org/10.1002/ps.4905.</Citation>
</Reference>
<Reference>
<Citation>Brubaker, S.W., Bonham, K.S., Zanoni, I. and Kagan, J.C. (2015) Innate immune pattern recognition: A cell biological perspective. Annual Review of Immunology, 33, 257-290.</Citation>
</Reference>
<Reference>
<Citation>Bulgheresi, S., Gruber-Vodicka, H.R., Heindl, N.R., Dirks, U., Kostadinova, M., Breiteneder, H. et al. (2011) Sequence variability of the pattern recognition receptor Mermaid mediates specificity of marine nematode symbioses. The ISME Journal, 5, 986-998.</Citation>
</Reference>
<Reference>
<Citation>Castillo, J.C., Reynolds, S.E. and Eleftherianos, I. (2011) Insect immune responses to nematode parasites. Trends in Parasitology, 27, 537-547.</Citation>
</Reference>
<Reference>
<Citation>Chapuis, E., Emelianoff, V., Paulmier, V., Le Brun, N., Pages, S., Sicard, M. et al. (2009) Manifold aspects of specificity in a nematode-bacterium mutualism. Journal of Evolutionary Biology, 22, 2104-2117.</Citation>
</Reference>
<Reference>
<Citation>Cheng, C., Wickham, J.D., Chen, L., Xu, D., Lu, M. and Sun, J.H. (2018a) Bacterial microbiota protect an invasive bark beetle from a pine defensive compound. Microbiome, 6, 132.</Citation>
</Reference>
<Reference>
<Citation>Cheng, Y., Lin, Z., Wang, J.M., Xing, L.S., Xiong, G.H. and Zou, Z. (2018b) CTL14, a recognition receptor induced in late stage larvae, modulates anti-fungal immunity in cotton bollworm Helicoverpa armigera. Developmental and Comparative Immunology, 84, 142-152.</Citation>
</Reference>
<Reference>
<Citation>Cooper, D., Wuebbolt, C., Heryanto, C. and Eleftherianos, I. (2019) The prophenoloxidase system in Drosophila participates in the anti-nematode immune response. Molecular Immunology, 109, 88-98.</Citation>
</Reference>
<Reference>
<Citation>Darby, C. (2005) Interactions with microbial pathogens. Wormbook the Online Review of C Elegans Biology, 6, 1-15.</Citation>
</Reference>
<Reference>
<Citation>Dawadi, B., Wang, X., Xiao, R., Muhammad, A., Hou, Y. and Shi, Z. (2018) PGRP-LB homolog acts as a negative modulator of immunity in maintaining the gut-microbe symbiosis of red palm weevil, Rhynchophorus ferrugineus Olivier. Developmental and Comparative Immunology, 86, 65-77.</Citation>
</Reference>
<Reference>
<Citation>Douglas, A.E. (2015) Multiorganismal insects: diversity and function of resident microorganisms. Annual Review of Entomology, 60, 17-34.</Citation>
</Reference>
<Reference>
<Citation>Douglas, A.E., Minto, L.B. and Wilkinson, T.L. (2001) Quantifying nutrient production by the microbial symbionts in an aphid. The Journal of Experimental Biology, 204, 349-358.</Citation>
</Reference>
<Reference>
<Citation>Eleftherianos, I., Waterfield, N.R., Bone, P., Boundy, S., Ffrench-Constant, R.H. and Reynolds, S.E. (2009) A single locus from the entomopathogenic bacterium Photorhabdus luminescens inhibits activated Manduca sexta phenoloxidase. FEMS Microbiology Letters, 293, 170-176.</Citation>
</Reference>
<Reference>
<Citation>Eleftherianos, I., Yadav, S., Kenney, E., Cooper, D., Ozakman, Y. and Patrnogic, J. (2018) Role of endosymbionts in insect-parasitic nematode interactions. Trends in Parasitology, 34, 430-444.</Citation>
</Reference>
<Reference>
<Citation>Fielding, N.J. and Evans, H.F. (1996) The pine wood nematode Bursaphelenchus xylophilus (Steiner and Buhrer) Nickle ( = B. lignicolus Mamiya and Kiyohara): an assessment of the current position. Forestry: An International Journal of Forest Research, 69, 35-46.</Citation>
</Reference>
<Reference>
<Citation>Florez, L.V., Biedermann, P.H.W., Engl, T. and Kaltenpoth, M. (2015) Defensive symbioses of animals with prokaryotic and eukaryotic microorganisms. Natural Product Reports, 32, 904-936.</Citation>
</Reference>
<Reference>
<Citation>Gegner, T., Carrau, T., Vilcinskas, A. and Lee, K.Z. (2018) The infection of Harmonia axyridis by a parasitic nematode is mediated by entomopathogenic bacteria and triggers sex-specific host immune responses. Scientific Reports, 8, 15938.</Citation>
</Reference>
<Reference>
<Citation>Gouge, D.H. and Snyder, J.L. (2006) Temporal association of entomopathogenic nematodes (Rhabditida: Steinernematidae and Heterorhabditidae) and bacteria. Journal of Invertebrate Pathology, 91, 147-157.</Citation>
</Reference>
<Reference>
<Citation>Harris, K.L., Christensen, B.M. and Miranpuri, G.S. (1986) Comparative studies on the melanization response of male and female mosquitoes against microfilariae. Developmental and Comparative Immunology, 10, 305-310.</Citation>
</Reference>
<Reference>
<Citation>Ho, B.C., Yap, E.H. and Singh, M. (1982) Melanization and encapsulation in Aedes aegypti and Aedes togoi in response to parasitization by a filarioid nematode (Breinlia booliati). Parasitology, 85 (Pt 3), 567-575.</Citation>
</Reference>
<Reference>
<Citation>Ji, D. and Kim, Y. (2004) An entomopathogenic bacterium, Xenorhabdus nematophila, inhibits the expression of an antibacterial peptide, cecropin, of the beet armyworm, Spodoptera exigua. Journal of Insect Physiology, 50, 489-496.</Citation>
</Reference>
<Reference>
<Citation>Kurata, S. (2010) Fly immunity: recognition of pathogens and induction of immune responses. Advances in Experimental Medicine and Biology, 708, 205-217.</Citation>
</Reference>
<Reference>
<Citation>Kwon, H.R., Choi, G.J., Choi, Y.H., Jang, K.S., Sung, N.D., Kang, M.S., et al. (2010) Suppression of pine wilt disease by an antibacterial agent, oxolinic acid. Pest Management Science, 66, 634-639.</Citation>
</Reference>
<Reference>
<Citation>Ledon-Rettig, C.C., Moczek, A.P. and Ragsdale, E.J. (2018) Diplogastrellus nematodes are sexually transmitted mutualists that alter the bacterial and fungal communities of their beetle host. Proceedings of the National Academy of Sciences USA, 115, 10696-10701.</Citation>
</Reference>
<Reference>
<Citation>Lee, D.J., Lee, J.B., Jang, H.A., Ferrandon, D. and Lee, B.L. (2017) An antimicrobial protein of the Riptortus pedestris salivary gland was cleaved by a virulence factor of Serratia marcescens. Developmental and Comparative Immunology, 67, 427-433.</Citation>
</Reference>
<Reference>
<Citation>Lu, M., Hulcr, J. and Sun, J.H. (2016) The role of symbiotic microbes in insect invasions. Annual Review of Ecology, Evolution, and Systematics, 47, 487-505.</Citation>
</Reference>
<Reference>
<Citation>Morales-Jimenez, J., Zuniga, G., Villa-Tanaca, L. and Hernandez-Rodriguez, C. (2009) Bacterial community and nitrogen fixation in the red turpentine beetle, Dendroctonus valens LeConte (Coleoptera: Curculionidae: Scolytinae). Microbial Ecology, 58, 879-891.</Citation>
</Reference>
<Reference>
<Citation>Nakanishi, K., Hoshino, M., Nakai, M. and Kunimi, Y. (2008) Novel RNA sequences associated with late male killing in Homona magnanima. Proceedings. Biological Sciences, 275, 1249-1254.</Citation>
</Reference>
<Reference>
<Citation>Nascimento, F.X., Hasegawa, K., Mota, M. and Vicente, C.S. (2015) Bacterial role in pine wilt disease development-review and future perspectives. Environmental Microbiology Reports, 7, 51-63.</Citation>
</Reference>
<Reference>
<Citation>Paiva, G., Proença, D.N., Francisco, R., Verissimo, P., Santos, S.S., Fonseca, L., et al. (2013) Nematicidal bacteria associated to pinewood nematode produce extracellular proteases. PLoS ONE, 8, e79705.</Citation>
</Reference>
<Reference>
<Citation>Park, Y., Kim, Y., Tunaz, H. and Stanley, D.W. (2004) An entomopathogenic bacterium, Xenorhabdus nematophila, inhibits hemocytic phospholipase A2 (PLA2) in tobacco hornworms Manduca sexta. Journal of Invertebrate Pathology, 86, 65-71.</Citation>
</Reference>
<Reference>
<Citation>Proenca, D.N., Fonseca, L., Powers, T.O., Abrantes, I.M. and Morais, P.V. (2014) Diversity of bacteria carried by pinewood nematode in USA and phylogenetic comparison with isolates from other countries. PLoS ONE, 9, e105190.</Citation>
</Reference>
<Reference>
<Citation>Proenca, D.N., Francisco, R., Santos, C.V., Lopes, A., Fonseca, L., Abrantes, I.M., et al. (2010) Diversity of bacteria associated with Bursaphelenchus xylophilus and other nematodes isolated from Pinus pinaster trees with pine wilt disease. PLoS ONE, 5, e15191.</Citation>
</Reference>
<Reference>
<Citation>Proenca, D.N., Grass, G. and Morais, P.V. (2017) Understanding pine wilt disease: roles of the pine endophytic bacteria and of the bacteria carried by the disease-causing pinewood nematode. Microbiologyopen, 6, e415.</Citation>
</Reference>
<Reference>
<Citation>Rao, X.J., Wu, P., Shahzad, T., Liu, S., Chen, L., Yang, Y.F., et al. (2016) Characterization of a dual-CRD galectin in the silkworm Bombyx mori. Developmental and Comparative Immunology, 60, 149-159.</Citation>
</Reference>
<Reference>
<Citation>Sadekuzzaman, M., Park, Y., Lee, S., Kim, K., Jung, J.K. and Kim, Y. (2017) An entomopathogenic bacterium, Xenorhabdus hominickii ANU101, produces oxindole and suppresses host insect immune response by inhibiting eicosanoid biosynthesis. Journal of Invertebrate Pathology, 145, 13-22.</Citation>
</Reference>
<Reference>
<Citation>Tang, H., Kambris, Z., Lemaitre, B. and Hashimoto, C. (2008) A serpin that regulates immune melanization in the respiratory system of Drosophila. Developmental Cell, 15, 617-626.</Citation>
</Reference>
<Reference>
<Citation>Tanji, T. and Ip, Y.T. (2005) Regulators of the Toll and Imd pathways in the Drosophila innate immune response. Trends in Immunology, 26, 193-198.</Citation>
</Reference>
<Reference>
<Citation>Vasta, G.R. (2009) Roles of galectins in infection. Nature Reviews. Microbiology, 7, 424-438.</Citation>
</Reference>
<Reference>
<Citation>Vicente, C.S., Nascimento, F., Espada, M., Mota, M. and Oliveira, S. (2011) Bacteria associated with the pinewood nematode Bursaphelenchus xylophilus collected in Portugal. Antonie Van Leeuwenhoek, 100, 477-481.</Citation>
</Reference>
<Reference>
<Citation>Vicente, C.S., Nascimento, F.X., Barbosa, P., Ke, H.M., Tsai, I.J., Hirao, T., et al. (2016) Evidence for an opportunistic and endophytic lifestyle of the Bursaphelenchus xylophilus-associated bacteria Serratia marcescens PWN146 isolated from wilting Pinus pinaster. Microbial Ecology, 72, 669-681.</Citation>
</Reference>
<Reference>
<Citation>Vicente, C.S., Nascimento, F.X., Espada, M., Barbosa, P., Hasegawa, K., Mota, M., et al. (2013) Characterization of bacterial communities associated with the pine sawyer beetle Monochamus galloprovincialis, the insect vector of the pinewood nematode Bursaphelenchus xylophilus. FEMS Microbiology Letters, 347, 130-139.</Citation>
</Reference>
<Reference>
<Citation>Volovych, O., Lin, Z., Du, J., Jiang, H. and Zou, Z. (2019) Identification and temporal expression profiles of cuticular proteins in the endoparasitoid wasp, Microplitis mediator. Insect Science, https://doi.org/10.1111/1744-7917.12711.</Citation>
</Reference>
<Reference>
<Citation>Wang, B., Lu, M., Cheng, C., Salcedo, C. and Sun, J.H. (2012) Saccharide-mediated antagonistic effects of bark beetle fungal associates on larvae. Biology Letters, 9, 20120787.</Citation>
</Reference>
<Reference>
<Citation>Wang, J.M., Cheng, Y., Shi, Z.K., Li, X.F., Xing, L.S., Jiang, H., et al. (2019) Aedes aegypti HPX8C modulates immune responses against viral infection. PLoS Neglected Tropical Diseases, 13, e0007287.</Citation>
</Reference>
<Reference>
<Citation>Wei, G., Lai, Y., Wang, G., Chen, H., Li, F. and Wang, S. (2017a) Insect pathogenic fungus interacts with the gut microbiota to accelerate mosquito mortality. Proceedings of the National Academy of Sciences USA, 114, 5994-5999.</Citation>
</Reference>
<Reference>
<Citation>Wei, G., Lai, Y., Wang, G., Chen, H. and Wang, S. (2017b) Insect pathogenic fungus interacts with the gut microbiota to accelerate mosquito mortality. Proceedings of the National Academy of Sciences USA, 114, 5994-5999.</Citation>
</Reference>
<Reference>
<Citation>Wu, P., Sun, P., Nie, K., Zhu, Y., Shi, M., Xiao, C., et al. (2019a) A gut commensal bacterium promotes mosquito permissiveness to arboviruses. Cell Host Microbe, 25, 101-112 e5.</Citation>
</Reference>
<Reference>
<Citation>Wu, X.Q., Yuan, W.M., Tian, X.J., Fan, B., Fang, X., Ye, J.R. et al. (2013) Specific and functional diversity of endophytic bacteria from pine wood nematode Bursaphelenchus Xylophilus with different virulence. International Journal of Biological Sciences, 9, 33-44.</Citation>
</Reference>
<Reference>
<Citation>Wu, Y., Wickham, J. D., Zhao, L. and Sun, J.H. (2019b) CO2 drives the pine wood nematode off its insect vector. Current Biology, 29, R619-R620.</Citation>
</Reference>
<Reference>
<Citation>Xu, L., Lou, Q., Cheng, C., Lu, M. and Sun, J.H. (2015) Gut-associated bacteria of Dendroctonus valens and their involvement in verbenone production. Microbial Ecology, 70, 1012-1023.</Citation>
</Reference>
<Reference>
<Citation>Yu, X.Q. and Kanost, M.R. (2000) Immulectin-2, a lipopolysaccharide-specific lectin from an insect, Manduca sexta, is induced in response to Gram-negative bacteria. The Journal of Biological Chemistry, 275, 37373-37381.</Citation>
</Reference>
<Reference>
<Citation>Yuan, C., Xing, L., Wang, M., Wang, X., Yin, M., Wang, Q., et al. (2017) Inhibition of melanization by serpin-5 and serpin-9 promotes baculovirus infection in cotton bollworm Helicoverpa armigera. PLoS Pathogens, 13, e1006645.</Citation>
</Reference>
<Reference>
<Citation>Zhang, L.L., Hu, X.H., Wu, S.Q., Batool, K., Chowdhury, M., Lin, Y., et al. (2018a) Aedes aegypti galectin competes with Cry11Aa for binding to ALP1 to modulate cry toxicity. Journal of Agricultural and Food Chemistry, 66, 13435-13443.</Citation>
</Reference>
<Reference>
<Citation>Zhang, X., Sun, Z., Zhang, X., Zhang, M. and Li, S. (2018b) Hemolymph microbiomes of three aquatic invertebrates as revealed by a new cell extraction method. Applied and Environmental Microbiology, 84, e02824-17.</Citation>
</Reference>
<Reference>
<Citation>Zhao, B.G. and Lin, F. (2005) Mutualistic symbiosis between Bursaphelenchus xylophilus and bacteria of the genus Pseudomonas. Forest Pathology, 35, 339-345.</Citation>
</Reference>
<Reference>
<Citation>Zhao, L., Mota, M., Vieira, P., Butcher, R.A. and Sun, J.H. (2014) Interspecific communication between pinewood nematode, its insect vector, and associated microbes. Trends in Parasitology, 30, 299-308.</Citation>
</Reference>
<Reference>
<Citation>Zhao, L., Zhang, S., Wei, W., Hao, H., Zhang, B., Butcher, R.A., et al. (2013) Chemical signals synchronize the life cycles of a plant-parasitic nematode and its vector beetle. Current Biology, 23, 2038-2043.</Citation>
</Reference>
<Reference>
<Citation>Zhao, L., Wei, W., Kang, L. and Sun, J. (2007) Chemotaxis of the pinewood nematode, Bursaphelenchus xylophilus, to volatiles associated with host pine, Pinus massoniana, and its vector Monochamus alternatus. Journal of Chemical Ecology, 33, 1207-1216.</Citation>
</Reference>
<Reference>
<Citation>Zhou, F., Lou, Q., Wang, B., Xu, L., Cheng, C., Lu, M., et al. (2016) Altered carbohydrates allocation by associated bacteria-fungi interactions in a bark beetle-microbe symbiosis. Scientific Reports, 6, 20135.</Citation>
</Reference>
<Reference>
<Citation>Zhou, J., Zhao, L., Yu, H.Y., Wang, Y.H., Zhang, W., Hu, S.N., et al. (2018) Immune tolerance of vector beetle to its partner plant parasitic nematode modulated by its insect parasitic nematode. FASEB Journal, 32, 4862-4877.</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
<settlement>
<li>Pékin</li>
</settlement>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Zhang, Chi" sort="Zhang, Chi" uniqKey="Zhang C" first="Chi" last="Zhang">Chi Zhang</name>
</noRegion>
<name sortKey="Sun, Jianghua" sort="Sun, Jianghua" uniqKey="Sun J" first="Jianghua" last="Sun">Jianghua Sun</name>
<name sortKey="Sun, Jianghua" sort="Sun, Jianghua" uniqKey="Sun J" first="Jianghua" last="Sun">Jianghua Sun</name>
<name sortKey="Wickham, Jacob D" sort="Wickham, Jacob D" uniqKey="Wickham J" first="Jacob D" last="Wickham">Jacob D. Wickham</name>
<name sortKey="Zhang, Chi" sort="Zhang, Chi" uniqKey="Zhang C" first="Chi" last="Zhang">Chi Zhang</name>
<name sortKey="Zhao, Lilin" sort="Zhao, Lilin" uniqKey="Zhao L" first="Lilin" last="Zhao">Lilin Zhao</name>
<name sortKey="Zhao, Lilin" sort="Zhao, Lilin" uniqKey="Zhao L" first="Lilin" last="Zhao">Lilin Zhao</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PlantImRecepV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000228 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000228 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PlantImRecepV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32443173
   |texte=   A new bacteria-free strategy induced by MaGal2 facilitates pinewood nematode escape immune response from its vector beetle.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32443173" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PlantImRecepV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Sat Nov 21 12:33:18 2020. Site generation: Sat Nov 21 12:33:47 2020